25a^2=4a^2+(9)^2

Simple and best practice solution for 25a^2=4a^2+(9)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25a^2=4a^2+(9)^2 equation:



25a^2=4a^2+(9)^2
We move all terms to the left:
25a^2-(4a^2+(9)^2)=0
We get rid of parentheses
25a^2-4a^2-9^2=0
We add all the numbers together, and all the variables
21a^2-81=0
a = 21; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·21·(-81)
Δ = 6804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6804}=\sqrt{324*21}=\sqrt{324}*\sqrt{21}=18\sqrt{21}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{21}}{2*21}=\frac{0-18\sqrt{21}}{42} =-\frac{18\sqrt{21}}{42} =-\frac{3\sqrt{21}}{7} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{21}}{2*21}=\frac{0+18\sqrt{21}}{42} =\frac{18\sqrt{21}}{42} =\frac{3\sqrt{21}}{7} $

See similar equations:

| x=20+0.24/0.4 | | X=9+9x45 | | 9+9x45=x | | 0.6x-0.2(40+x)=0.2(40) | | -12=r-4 | | -12k=-44 | | 14=t/6 | | 9z-11=3z+9 | | {1}{3}n=15 | | 3x+-9=84 | | 6n=4n-30 | | 51=50+n-40÷4 | | 2+10x=2-5+3 | | 6x-15=x-15 | | 7q+6q+36q+7q+6,q=2 | | 15+5p=6 | | (5x÷24)=(7÷12) | | 2(y-2)+2=8 | | X/80=280-x/60 | | 5m/2=15/16 | | 8x(-1+2x)=0 | | 8x(-1+2x)=) | | 3−2b=−9 | | u/18=18 | | u/418=18 | | u18=18 | | (2y+2)=70 | | (2y+2)=360 | | (y+8)=360 | | 12w+18w-6+4=-5w+4-6 | | -2=6n+4 | | -5u+33=-2(u-6) |

Equations solver categories